TDA Data Management Planning: Construction of
Maximal Daily Tracking Schedules

C. A. Greenhall
Consultant to the TDA Planning Office

An algorithm is described that computes time-per-day available to each of
several spacecraft that are tracked simultaneously by a DSN subnet.

l. Introduction

The algorithm described herein was written as a tool
for use by the DSN in making long-range load forecasts.
The input data are a set of view periods of several space-
craft as seen by each of the three stations of a subnet
during a particular 24-hour period. These view periods
can overlap in complicated ways; thus it is a sub-
stantial problem to compute how much time can be
given to each spacecraft (S/C), given that all the S/C
must be equally well covered. More precisely, let us
number the S/C from 1 to n. If S/C number s is tracked
for c(s) hours by the subnet, then the figure of merit used
in this article for the tracking schedule is

m = min ¢(s)

8

We seek a tracking schedule that makes m as large as
possible.

A variant -of this problem requires that one of the

missions, say s = s;, be given 24-hour coverage. In this
case, the minimum is taken over all s 5.
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The problem is solved by converting it to a linear pro-
gram. Unfortunately, the linear program is not quite a
correct model of the problem, for in some cases the linear
program is not feasible. If certain constraints of the prob-
lem are then relaxed, the linear program usually becomes
feasible and provides useful estimates. In addition, there
is a separate computation, valid for all cases, that quickly
gives an upper bound on S/C coverage time.

The algorithm has been imbedded in a conversational,
structured MBASIC program, called DATRAMAX (DAily
TRAcking MAXimizer). This form is convenient for
evaluating the usefulness of the algorithm.

Il. Problem Statement

A subnet of Deep Space Stations at Goldstone, Aus-
tralia, and Spain is to track n spacecraft where 2 < n < 6.
The view period of each S/C at each station is given and
is assumed to be constant from day to day in this model.
Also given are the following nonnegative parameters: e,
the minimum elevation for tracking; r, the minimum time
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for a station to transfer its attention from one S/C to
another; and §, the minimum duration of a tracking
period. One of the S/C may be favored, that is, it may be
required that it be tracked by one station whenever some
station sces it above clevation e.

It is assumed that the time for a S/C to go from the
horizon to clevation € is approximately independent of
the station and S/C locations; thus, € will be given in
units of time and assumed to be constant. In fact, it is
suficient simply to shorten the ends of each view period
by €; we will speak then of shortened view periods.

A feasible tracking schedule is defined as follows. For
cach station and S/C, the station either does not track the
S/C at all, or tracks it during a single subinterval of the
shortened view period. The schedule is periodic with
period 24 hours. At any time, no two stations track
the same S/C and, of course, a station cannot track more
than one S/C. The tracking periods satisfy the constraints
implied by the numbers r and 8. One of the S/C may be
favored as mentioned above.

For any such schedule, set ¢(s), s = 1 to n, equal to the
total time devoted to S/C s by all three stations. The
problem is to find the greatest minimum coverage

max (min ¢(s))
8548y

where the maximum is taken over the collection of fea-
sible tracking schedules, and s; is the index of the favored
S/C. (If none are favored, then s; is set equal to 0.)

HI. Solution Technique

Let us label the Stations 1, 2, 3 (Goldstone, Australia,
Spain) and the S/C from 1 to n.

This algorithm solves the problem for most practical
cases. The exceptions occur because of additional restric-
tions that are placed on the class of feasible schedules.
First, we assume that each shortened view period con-
tains a nonempty tracking period (even if that tracking
period reduces to a single point!) For example, if § = 8,
then every view period must contain a tracking period of
at least 3 hours—no tracking period can be omitted. For

certain combinations of view periods, €, 7, 8, and s, this
~assumption forces the constraints to become incompati-
ble. For example, suppose that there are two S/C at the
same place in the sky, and that their view periods are
20000900 at Goldstone, 0400-1300 at Australia, and
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12000100 at Spain (Fig. 1). (This is an approximation of
a sct of real view periods.) Assume for this demonstration
that e =0, r = 0, § = 3, and that S/C 1 is favored. Then
S/C 1 must be tracked by Goldstone at least between
0100 and 0400, by Australia at least between 0900 and
1200, and by Spain at least between 1300 and 2000, and
during these periods, S/C 2 cannot be tracked. Therefore,
S/C 2 can be tracked only during the periods 0400-0900,
1200-1300, and 2000-0100. But it is impossible to encase
three disjoint tracking intervals of at least 3 hours each
within the union of these three periods.

For most view period data, the constraints are compati-
ble if r and § are set to 0.

The second restriction is less serious. For each station,
the n tracking periods are disjoint subintervals of the
cyclic 24-hour day; we assume that they occur in the same
cyclic order as the midpoints of the Goldstone view
periods. Also, the three tracking periods of each S/C are
assumed to follow each other in the east-west cyclic order
1, 2, 8, 1. We feel that these assumptions are not unduly
restrictive, for the configuration of view periods does not
change much from station to station, and this choice
seems to allow the most room for placing the tracking
periods.

These additional restrictions allow the problem to be
reduced to a linear program whose variables give the left
and right end points of the tracking periods. Let the
shortened view period of station a and S/C s have rise
and set times p(a,s) and o(a,s). These times can be
shifted by multiples of 24 so that 0 < p(a,s) < 24,
pla,s) < o(a,s) <p(a,s) - 24. Let the tracking period for
the combination (a, s) be

(p(a, s) + z(a,s), o{a,s) — w(a,s))

where z(a, s) and w(a, s) are the nonnegative linear pro-
gram variables.

Following are the linear constraints and object function:

(1) View constraints: these state that the tracking
periods have length > §:

z(a,s) + w(a, s) < ola,s) — p(a,s) — 8

for all q, s.

(2) Possibility constraints: these state that the tracking
periods for a station follow each other in the cyclic
midpoint order mentioned above. Let m(s),s =1
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to n, be the midpoint of the Goldstone view period
(p(1,s),o(1,s)). Let s,,---, s, be a permutation of

1,2,---. n such that m(s;,) < m(s,) < -+ < m(s,).
Let s,,; = sy,
P'(1,551) = p(1,85:4), ifji<n
= p(l,s,) + 24, ifi=n

For a = 2 and 3, determine p’(a, s,,) such that
'p,(a7si+1) Ep(ﬂ, sﬂl) (mOd 24):
—12 < 0'(0, Sj) - P’(a’ Sj+1) - O(I,Sj) + P’(L Sj#l) < 12

This ties the view period configurations of stations
2 and 3 to that of station 1. The constraints are

w(a, s;) + z(a, sj.1) > ola, s;) — p’(a, $3,1) + 7

fora =1to0 3,j =1 to n. If the right-hand side is
not positive, that constraint is omitted.

(3) Redundancy constraints: these express the east-west
order of the tracking periods of each S/C. Let @

be defined by
adl=a+1, ifa=1or2
3pl=1

Fora=1 to 3, s =1 to n, determine p”(a & 1,s)
such that
plla®l,s)=pea®1l,s) (mod24),
0<p’(ad®l,s) — pla,s) <24

The constraints are
w(a,s) +z(a ® 1,s) > o(a,s) — p"(a® 1,s)

for a =1 to 8, ss£s;. (Omit any constraint with
nonpositive right-hand side.) If s; =4 0, then the con-
straints for s = s, are

w(a,s;) +2(ad 1,s))
= max (0,0(a,s;) — p"(a ® 1,sy))

for a =1 to 3. (If the right-hand side is zero, we
could eliminate w(a,s;) and z(a @ 1,s;) from the
linear program, but the computer program would
become more complex.)

(4) Object constraints and object function: The object
function to be maximized is an auxiliary variable u,
which satisfies the constraints
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c(s) 2 m,  sFES

where

3

o(s) = 3 (ola,5) — p(a,s) — 2(a,s) — (a,s))

=1

the tracking time devoted to s by all three stations.

This linear program is solved by a general simplex
routine, which, of course, reports the infeasibility of the
constraints, if such is the case. Once the linear program
is solved, it is easy to make a further improvement not
called for by the problem statement. Let m = max g, ob-
tained by the previous linear program. Consider another
linear program with the same variables, the same con-
straints (1) through (3), but with (4) replaced by

(4) Object constraints:

ofs)>m+p, s

Object function:

2 cls)

8781

The final solution of the first program, with p set to 0,
is given to the second program, which maximizes total
tracking time while keeping each c¢(s) not less than the
best minimum coverage per S/C. The initial tableau of
the second program differs very little from the final
tableau of the first program, and the optimization of the
second program requires few simplex iterations.

Because the algorithm sometimes causes incompatible
constraints, a backup computation is provided for all
cases. This gives (1) an upper bound on total tracking
time, (2) time available to the favored S/C if 5,540, and
(3) an upper bound on tracking time per unfavored S/C.
The set of endpoints of the shortened view periods divides
the cyclic 24-hour day into subintervals called atoms. For
the kth atom, there is an incidence table Ei(a, s), where
Ex(a,s) = 1 if atom k is contained in the shortened view
period of station @ and S/C s, and E,(a, s) = 0 otherwise.
A diagonal of a 0-1 matrix (such as E;) is defined as a
subset D of the set of “I's” of the matrix such that D
has no two 1’s in the same row or column. (This general-
izes the ordinary notion of the diagonals of a square
matrix.) Let a feasible tracking schedule be constructed
upon the given view periods. At any instant of time ¢
during the k'" atom, the set of index pairs (a,s) such that
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station @ is tracking S/C s must be a diagonal of E.
Hence, the number of S/C being tracked at time ¢ is
bounded above by the size dj of a largest diagonal of Ej.
Therefore, if 1 is the length of atom k, the total tracking
time of any feasible schedule cannot exceed B = Sdilx.

Since Ej is a 3 by n matrix, the number d can equal
only 0,1,2, or 8, and a simple search suffices to discover
its value. If there is a favored S/C s;£0, and if Ej; has
a 1 in column s;, then only those diagonals of Ej that have
a 1 in this column can be considered. It can be proved,
however, that the maximum size of the diagonals in this
restricted set again equals dx.

The time T, available to S/C s; is simply 4, where
the sum is over all k such that E; has a 1 in column s;.
Then B — T, divided by the number of unfavored S/C
is a bound on the tracking time for each of these S/C.

IV. Sample Inputs and Outputs

Suppose that there are 2 S/C with the following view
periods:

Goldstone Australia Spain

Rise Set Rise Set Rise Set
S/C 1 0430 1748 1340 2136 2050 1033
S/C 2 2225 1046 0615 1540 1450 0327

Lete=05h,r=1h 8§ =3h,s; =0.

The “atoms” calculation yields a bound 46.02 h on total
tracking and hence, a bound 23.01 h on tracking time
per S/C. The linear programs compute the following
tracking schedule and coverages:
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Goldstone Australia Spain
S/C 1 1003-1610 1610-2106 2235-1003
S/C 2 2255-0903 0903-1510 1520-2135
S/C 1. 22.51h
S/C 2: 2251 h
Total 45.02h

Now let s; = 1. The “atoms” calculation shows 23.77 h
available to the favored S/C 1, and hence, a bound of
22.25 h on tracking time for S/C 2. The tracking schedule
and coverages are now

Goldstone Australia Spain
§/C 1 1003-1620 1610-2106 2120-1003
S/C 2 2255-0903 0903-1510 1520-2020
S/C1: 2377h
S/C 2.  2195h
Total 45.02h

V. Conclusions

This algorithm has two main defects caused by forcing
the problem into the framework of one or two fixed linear
programs. First, the linear program can be infeasible.
Second, the schedules produced cannot be described as
“optimal.” More criteria are needed. For example, having
maximized the smallest ¢(s) (coverage of S/C s), one
could then maximize the next smallest ¢(s), and so on.
Remedy of these defects may require programming with
mixed real and integer variables.

In spite of these defects, the algorithm will still yield
realistic estimates of time available to future missions.
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0 1 2 3 4 5 6 7 8 91011 12131415 16 17 18 19 20 21 22 23 24
GOLDSTONE $/C 1 < ) S
s/C 2 < —
AUSTRALIA  s/C 1 > ~
$/C 2 > —
SPAIN s/C1 —< >
s/c2 L— N

Fig. 1. An example of incompatible constraints
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